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Introduction 

"I see a man with a telescope." 

Does the speaker use the telescope to see the man? Or does the speaker see a man 

who has a telescope? It turns out that these two interpretations are both possible. If we 

structure this text into linguistic trees, two valid trees will account for this sentence as shown 

in tree A and B below. This variation of trees for one text is called Structural Ambiguity 

(SA) in Linguistics. How to build an accurate model to solve the SA problem in computers is 

a controversial problem. 

 
A1 2 S B3 S  

 
 
 

NP VP NP VP  
 
 
 

N V NP PP N V NP  
 
 
 

I see a man with a telescope I see NP PP  
 
 
 

a man with a telescope 
Before introducing how computers analyze languages, it is essential to consider how 

humans distinguish SA in daily conversations. When babies grow up, parents do not 

deliberately teach them grammar as teaching an adult another language. Instead, according 

to the theories of language acquisition proposed by VanPatten, Keating, and Wulff (2020), 

children are born with an innate blueprint for languages. This blueprint is 

  
1 S stands for sentence; PP stands for prepositional phrase; VP stands for verbal phrase; N 
stands for noun; V stands for verb. 
2 The speaker uses the telescope to see the man. 
3 The speaker sees a man who has a telescope. 



also called the Universal Grammar (UG), a "computer program" that all humans are "pre-

loaded" with, but that still needs linguistic input to run. UG helps children construct the 

language model and generate grammar rules in the brain, and with a well-formed model, 

children can distinguish the SA without teaching. Is it possible for computers to build such a 

UG program to solve the SA problem? 

Some neurologists believe that if we can simulate an infant’s brain in a computer, it is 

possible to develop a UG program to solve language problems (Pulvermüller and Schumann 

1994). However, the current neurological exploration of the human brain is only the 

preliminary stage, so it seems it is still far from solve the SA problem. The need to solve SA 

problems has been increasing; for example, more accurate search engines and more 

intelligent voice assistants need to load Natural Language Processing (NLP) models that 

can handle SA problems. Therefore, linguists and computer scientists use computer 

algorithms to build models for SA problems instead of building a UG program. The way to 

solve the SA problem in linguistics is called Constituency Parsing (CP). One major step in 

CP is Sentence Structure Modeling (SSM). 

When the SA problem comes to the language of Chinese, the path to developing a 

good solution is more complicated. Chinese sentences are glued with words, which are not 

like English, where the sentences have spaces boundary between words. For the computer to 

understand the text, in addition to SSM, it needs to implement a Chinese Word 

Segmentation (CWS) model that adds boundary markers between words in Chinese 

sentences. 

Some linguists think traditional methods, such as dictionary-based models and 

searching algorithms, are good enough to build the CWS model and handle SSM. In 



contrast, others argue that advanced algorithms, such as Conditional Random Field (CRF), 

have more advantages in CWS modeling, and Context-Free Grammar (CFG) based 

algorithm, such as Cocke–Younger–Kasami (CYK), can handle SSM in Chinese language 

accurately. Through analyzing and comparing traditional methods and new algorithms in 

this paper, I argue that CRF and CFG based CYK algorithms are the best CP solution in 

Chinese NLP because (1) CRF can build an accurate CWS mode that account for critical 

information about the order of words and find new words, (2) CFG based CYK can structure 

SSM accurately and efficiently, and (3) CYK and its extended algorithms are refreshing the 

record of CP speed.



CRF Algorithm in CWS 

To introduce an example of Structural Ambiguity (SA) problem in Chinese, 

consider the following examples (1) to (3): 

(1) Jiehundeheshangweijiehunderen 

(2) Jiehunde/he/shangweijiehunde/ren 

Marry/and/not-marry/people  

‘Married people and single people’ 

(3) *Jiehunde/heshang/weijiehunde/ren 

*Marry/monk/non-marry/people 

 
Four words construct noun phrase (NP) (1) Jiehundeheshangweijiehunderen. 

Depending on segmentation, it can generate either grammatical NP (2) or ungrammatical NP 

(3). A Chinese speaker can use mental grammars to distinguish (2) is the valid interpretation 

of NP (1) and eliminate the possibility of (3). Building a grammar model for computers to 

eliminate ungrammatical possibilities of phrases is a significant task in Constituency 

Parsing (CP). The first step is to segment the words correctly. 

The analogy of photos segmentation inspires linguistics to build a Chinese Word 

Segmentation (CWS) model. As introduced in the previous section, the dilemma of CWS is 

an essential factor hindering the computer from segmenting a sentence into small pieces. To 

explain how CWS segmentizes a sentence into small pieces, we assume a Chinese sentence is 

similar to consecutive photos in a day. The job of the CWS model is to group consecutive 

photos of related activities (or group consecutive word fragments of related semantic 

meanings). The outcoming program of this grouping process is called a multivariate 

classifier. A simple and intuitive way to make a CWS is to train a multivariate classifier 



regardless of the chronological order between these photos. To prepare a multivariate 

classifier, according to Tsoumakas and Katakis (2007), they use some labeled photos as 

training data to train a model to classify directly based on the characteristics of the photos. 

Therefore, a multivariate classifier in CWS is similar: linguists label each word in the 

sentence as training data and train a model to classify the words directly based on the 

characteristics. 

The multivariate classifier seems like a good solution but has flaws. Since we ignore 

the critical information about the order of these words, this simple classification is imperfect. 

Like the above example (3), the classifier conforms heshang/monk as a word in this NP 

because the common words heshang/monk are in the dictionary of the training set. However, 

according to the context, the presence of heshang/monk does not fit here. The multivariate 

classifier fails to eliminate example (3) as an ungrammatical NP. 

The Conditional Random Field (CRF) algorithm solves the constituency parsing 

in CWS by part-of-speech (POS) tagging and sequence scoring based on the multivariate 

classifier. CRF was proposed and tested by Lafferty, McCallum, and Pereira (2001). While 

training a CWS model, CRF requires POS tagging to each word in a sentence. As shown in 

(4), there are four words with POS tags [NP PP VP NP]: 

(4) Wo mingtian qu xuexiao  

I tomorrow go school 

NP PP VP NP 

‘I will go to school tomorrow.’ 

According to Zhao, Huang, and Li (2006), Huang, and Li (2006), to build a CRF model, 

they need such POS tags from sufficient number of sentences to build POS sequences. 



When an unknown sentence is an input into the CRF model, it first uses POS tags to 

segment sentences into words. CRF scores each POS sequence and returns the fragments 

with the highest possibility of multiple segmentation possibilities. In our examples (1) to 

(3), the CRF model can eliminate NP (3) and select NP (2) as the correct result. 

Some researchers argue that the CRF algorithm is complicated, and the CWS 

problem can be solved based on the dictionary word segmentation algorithm. According to 

Qiu, Xie, Wu, and Li (2018), the dictionary-based word segmentation algorithm matches the 

string with a word in a well-established and sufficiently extensive dictionary. If the 

dictionary contains an entry, the match is successful, and the word is recognized. It makes 

sense that Qiu’s dictionary-based model can achieve a fast solution to the CWS problem 

considering their paper focuses on the subject domain of geoscience. However, when the 

scope of application is enormous, new words not in the dictionary appear. For example, in 

the application of movie review sentiment, users often discuss the phrases of characters and 

unique nouns in movies. These new words never occur in the dictionary; thus, the dictionary-

based model fails to segment them correctly. 

CRF algorithm can handle emerging new words in the Chinese language. According 

to Tian, Song, Xia, Zhang, and Wang (2020), if a new word that never appears in the training 

dataset, the CRF model can predict what kind of POS it is through inference of context POS 

sequence. Therefore, a well-trained CRF model is better than dictionary-based word 

segmentation algorithm since CRF can handle CWS with new words and adapt to new 

language variations. 

 
Context-Free Grammar in Sentence Structure Modeling 

 



Context-Free Grammar (CFG) is an excellent method to model sentence structure 

in Chinese because it can use simple rules and lexicon to account for most Chinese 

sentences. Designed by Chomsky (1956), as each word in a sentence has a POS tag, CFG 

links these tags together to generate a set of simplified grammar rules. To demonstrate how 

CFG models sentences, consider an example of CFG shown in (5) and (6): 

(5) 4 

Rules: Lexicon: 

S→NP VP N: ren/people 

NP→N Adj: jiehunde/married, shangweijiehunde/not married 

AdjP→Adj V: tiaowu/dance 

VP→V Conj: he/and 

X→ X Conj X  
 

4 AdjP stands for adjective phrase; Adj stands for adjective 

 
(6) S  

 
 
 

NP VP  
 
 
 

AdjP N V  
 
 
 

Adj ren/people tiaowu/dance  
 
 
 

Adj Conj Adj  
 
 
 

Jiehunde/Married he/and shangweijiehunde/not married 

 



A CFG comprises two parts to help model sentence structures, the first is a set of rules, and 

the second is a lexicon containing a list of words. To derive a set of rules as in (5), 

according to Sag, Wasow, Bender, and Sag (1999), they decompose a sentence into a top-

down tree structure as in (6). The node above a bottom node is called the mother of the 

bottom daughter node. For example, node S is the mother of daughter nodes NP and node 

VP. By observing the tree, linguists summarize what node(s) can be specific mother node’s 

daughter, then writes rules Mother→ Daughter1 Daughter2 ... Daughtern. Although the set 

of rules in (5) can only generate sentence (6), by analyzing more sentences in this way, the 

set of rules grows and can cover every grammar in Chinese. Example (7) is a demonstration. 

 
(7)(henduo/dade/piaoliangde/)qiqiu(/zaitianshang)/fei 

(many/big/pretty/)balloon(/in the sky)/fly  

‘(Many big pretty) balloons fly (in the sky).’ 

 
Eliminating many big pretty and in the sky, (7) is still a grammatical sentence (i.e., Balloons 

fly). Noticeably, many big pretty comprises three optional AdjP, and in the sky is also an 

optional PP. Therefore, based on the set of rules in (5), we can modify the NP rule as 

NP→(AdjP)* N and VP rule as VP→(PP) V. The parentheses between a node means that 

the daughter is optional, and the star means that the daughter can appear more than once. 

CFG allows the recursive rules (i.e., a rule contains the mother node on the right side of the 

rule), such as NP→(NP) N. Therefore, the flexibility and recursiveness allow CFG to model 

most grammar structures in Chinese. 

When there is a set with broad enough rules that can cover most grammars in 

Chinese, building the lexicon enables CFG to generate infinite sentences. Like the lexicon 

dictionary in (5), a lexicon contains keys of POS and values of words of key’s POS. In the 



traditional CFG model building process, according to Chomsky (1956), lexicon building is a 

complement step with CFG rules set building. However, the previous section introduced how 

CRF algorithm handles CWS by POS tagging: CFG lexicon can borrow the POS dictionary 

from trained CWS model. Once well-formed lexicon is built, linguists can apply the words in 

the lexicon into the rules. Eventually, linguists can compare the corpus to generated 

sentences and automatically model the valid sentence structures. 

Some researchers argue searching algorithms can solve SA problem already. With a 

well-formed CFG model and a big enough lexicon, it seems whether a CFG accepts the 

sentence is a mathematical fact; thus, the SA problem can be solved already. It is an approach 

to solve the SA problem in Chinese, as experimented by Loritz (1992). Loritz builds a 

GPARS system (Generalized Transition Network System) to solve the SA problem as a 

search problem searching. The search algorithms contain depth-first search (DFS) and 

breadth-first search (BFS) algorithms. Although it can solve SA problem, Loritz does not 

mention the vital problem of the worst-case performance of search algorithms in the paper. 

According to Even (2011), the worst-case performance for DFS and BFS is exponential. In 

other words, with the increasing length of a sentence linearly, the time consumption of 

parsing increases exponentially. The application of parsing, such as real-time translation, 

requires a relatively small-time complexity, so this method to solve the SA problem in 

Chinese is not an efficient solution. 

 
CYK in CP 

 
Extended on the CFG sentence structure model, the Cocke–Younger–Kasami 

(CYK) algorithm uses dynamic programming to generate possibilities for ambiguous 

sentences with low time complexity. Designed by Cocke (1969), Kasami (1966), and 



Younger (1967), CYK is a bottom-up syntax analysis algorithm that utilizes dynamic 

programming: tabulating and storing substring parses based on CFG structures to avoid doing 

repeated work. 

CYK first formalizes a CFG model into a Probabilistic Context-Free Grammar 

(PCFG) to save the time of searching. PCFG adds two steps after building a CFG model: 

computing (a) the possibilities of each rule occurring in the set of rules with the same mother 

node and (b) the possibilities of each word with the same POS tag. Example (8) is a 

transformed PCFG of example (5) with numbers in the brackets showing the possibility of 

occurrence. 

 
(8)  

Rules: Lexicon: 

S→NP VP [1.0] N: ren/people [1.0] 

NP→N [0.7], NP→ADJP N [0.3] Adj: jiehunde/married [0.5], shangweijiehunde/not married [0.5] 

AdjP→Adj [1.0] V: tiaowu/dance [1.0] 

VP→V [0.7], VP→V PP [1.0] Conj: he/and [1.0] 

X→ X Conj X [1.0]  
 
By pre-building the possibilities of each rule and word, PCFG serves as a pre-built dictionary 

for further CYK processing and saves the time to search possible combinations in parsing. 

CYK transforms the sentences into the matrix and utilizes dynamic programming to 

extract the possibilities of the syntactic structure of the sentences. According to Cocke (1969) 

Kasami (1966), and Younger (1967), by building an (n + 1) ∗ (n + 1) matrix, where n is the 

number of words in the sentence, CYK incrementally builds a parse that spans the whole 

input string column by column from left to right and bottom to top. In this way, the matrix 

will generate possible parsing situations with their possibilities computing from the PCFG 



model. So far, the different parsing situations represent different meanings for the ambiguous 

sentence. The parsing situation with a higher possibility is more likely to be the preferred 

meaning of the ambiguous sentence. Thus, the CYK algorithm is an excellent solution to the 

SA problem. 

As for the performance, CYK and its extended algorithm are much faster than search 

algorithms. According to Cocke (1969), Kasami (1966), and Younger (1967), the worst-case 

running time of the original CYK algorithm is only O(n3), where n is the length of the 

sentence. In other word, the time consumption of parsing is only cubed of the length of a 

sentence, which is far less than exponential relationship of search algorithms discussed in 

previous section. There is still room for improvement for CYK by adding the step of matrix 

multiplication. Lee (2002) proves CYK can reach even a lower time complexity of O(n3− 

epsilon/3), where time consumption of parsing is less than the cubed of the length of a sentence. 

Thus, with linguists and computer scientists’ work, the CYK based algorithms are 

continually refreshing the records of SSM in Chinese NLP (Tian, Song, Xia, Zhang, and 

Wang 2020).



Conclusion 

In conclusion, CRF and CFG based CYK algorithms are an excellent solution to CP 

in Chinese since CRF builds an accurate CWS model and CFG based CYK structures SSM 

efficiently. Beyond these advantages, CRF and CFG based CYK also outrank other methods. 

In detail, the multivariate classifier method in CWS modeling is outranked by CRF because it 

lacks critical information about the order of words. The dictionary-based method in CWS has 

a poor ability to handle emerging new words in the language. The searching algorithms in 

SSM cannot meet a small-time complexity requirement in real-world applications compared 

to CFG model. Therefore, CRF and CFG based CYK become the best solution that can 

contribute to the realm of Chinese NLP applications. 

Although CRF and CYK algorithms achieved the fastest result, there is no perfect 

model to solve the SA problem in NLP because our languages evolve every day. The 

potentials, helping computer scientists and linguists faster adapt to new applications and 

solve practical problems, make CRF and CYK the best solution in CP in Chinese NLP. 



References 

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on 

information theory, 2 (3), 113–124. 

Cocke, J. (1969). Programming languages and their compilers: Preliminary notes. New 

York University. 

Even, S. (2011). Graph algorithms. Cambridge University Press. 

Kasami, T. (1966). An efficient recognition and syntax-analysis algorithm for context-free 

languages. Coordinated Science Laboratory Report no. R-257 . 

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: 

Probabilistic models for segmenting and labeling sequence data. 

Lee, L. (2002). Fast context-free grammar parsing requires fast boolean matrix 

multiplication. Journal of the ACM (JACM), 49 (1), 1–15. 

Loritz, D. (1992). Generalized transition network parsing for language study: The gpars 

system for english, russian, japanese and chinese. Calico Journal, 5–22. 

Pulvermüller, F., & Schumann, J. H. (1994). Neurobiological mechanisms of language 

acquisition. Language learning, 44 (4), 681–734. 

Qiu, Q., Xie, Z., Wu, L., & Li, W. (2018). Dgeosegmenter: A dictionary-based chinese 

word segmenter for the geoscience domain. Computers & Geosciences, 121 , 1–

11. 

Sag, I. A., Wasow, T., Bender, E. M., & Sag, I. A. (1999). Syntactic theory: A formal 

introduction (Vol. 92). Center for the Study of Language and Information Stanford, 

CA. 



Tian, Y., Song, Y., Xia, F., Zhang, T., & Wang, Y. (2020). Improving chinese word 

segmentation with wordhood memory networks. In Proceedings of the 58th annual 

meeting of the association for computational linguistics (pp. 8274–8285). 

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International 

Journal of Data Warehousing and Mining (IJDWM), 3 (3), 1–13. 

VanPatten, B., Keating, G. D., & Wulff, S. (2020). Theories in second language 

acquisition: An introduction. Routledge. 

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3. 

Information and control, 10 (2), 189–208. 

Zhao, H., Huang, C., & Li, M. (2006). An improved chinese word segmentation system with 

conditional random field. In Proceedings of the fifth sighan workshop on chinese 

language processing (pp. 162–165). 

 

 

 

 

 

 

 

 

 

 

 

 


